@inproceedings{lorenz2024deciphering,title={Deciphering the Definition of Adversarial Robustness for post-hoc OOD Detectors},author={Lorenz, Peter and Fernandez, Mario and Mueller, Jens and Koethe, Ullrich},booktitle={ICML 2024 Workshop on the Next Generation of AI Safety},year={2024},url={https://arxiv.org/pdf/2406.15104},}
IJCNN
Adversarial Examples are Misaligned in Diffusion Model Manifolds
@inproceedings{lorenz2024manifold,title={Adversarial Examples are Misaligned in Diffusion Model Manifolds},author={Lorenz, Peter and Durall, Ricard and Keuper, Janis},booktitle={IJCNN},year={2024},url={https://arxiv.org/pdf/2401.06637.pdf},}
2023
ICCV
[Withdrawn] Detecting Images Generated by Deep Diffusion Models using their Local Intrinsic Dimensionality
Peter Lorenz, Ricard Durall, and Janis Keuper
In ICCV Workshop and Challenge on DeepFake Analysis and Detection , 2023
@inproceedings{lorenz2023detecting,title={[Withdrawn] Detecting Images Generated by Deep Diffusion Models using their Local Intrinsic Dimensionality},author={Lorenz, Peter and Durall, Ricard and Keuper, Janis},booktitle={ICCV Workshop and Challenge on DeepFake Analysis and Detection},year={2023},url={https://arxiv.org/pdf/2307.02347.pdf},}
VISAPP
Unfolding Local Growth Rate Estimates for (Almost) Perfect Adversarial Detection
@inproceedings{multilid,title={Unfolding Local Growth Rate Estimates for (Almost) Perfect Adversarial Detection},author={Lorenz, Peter and Keuper, Margret and and Janis Keuper},booktitle={VISAPP},year={2023},url={https://arxiv.org/pdf/2212.06776.pdf},}
2022
NeurIPS
Visual Prompting for Adversarial Robustness (top 3% @ ICASSP23)
Aochuan Chen*, Peter Lorenz*, Yuguang Yao, and 2 more authors
In NeurIPS WS TSRML, Safety ML WS, ICASSP23 , 2022
@inproceedings{prompting,title={Visual Prompting for Adversarial Robustness (top 3% @ ICASSP23)},author={Chen*, Aochuan and Lorenz*, Peter and Yao, Yuguang and Chen, Pin-Yu and Liu, Sijia},booktitle={NeurIPS WS TSRML, Safety ML WS, ICASSP23},year={2022},url={https://arxiv.org/pdf/2210.06284.pdf},}
AAAI
Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?
Peter Lorenz, Dominik Strassel, Margret Keuper, and 1 more author
In The AAAI-22 Workshop on Adversarial Machine Learning and Beyond , 2022
@inproceedings{lorenz2022is,title={Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?},author={Lorenz, Peter and Strassel, Dominik and Keuper, Margret and Keuper, Janis},booktitle={The AAAI-22 Workshop on Adversarial Machine Learning and Beyond},year={2022},url={https://openreview.net/forum?id=aLB3FaqoMBs},}
2021
ICML
Detecting AutoAttack Perturbations in the Frequency Domain
Peter Lorenz, Paula Harder, Dominik Straßel, and 2 more authors
In ICML 2021 Workshop on Adversarial Machine Learning , 2021
@inproceedings{lorenz2021detecting,title={Detecting AutoAttack Perturbations in the Frequency Domain},author={Lorenz, Peter and Harder, Paula and Stra{\ss}el, Dominik and Keuper, Margret and Keuper, Janis},booktitle={ICML 2021 Workshop on Adversarial Machine Learning},year={2021},url={https://openreview.net/forum?id=8uWOTxbwo-Z},}